Document Request

Title: Rapid gene discovery in plant parasitic nematodes via Expressed Sequence Tags

Author(s): James McCarter ; Pierre Abad ; John T. Jones ; David Bird

Source: Nematology Volume: 2 Number: 7 Page: 719 – 731

DOI: 10.1163/156854100509574

Publisher: BRILL

Abstract: Projects currently underway are generating thousands of publicly available DNA sequences representing numerous genes from plant parasitic nematodes. Use of these data has the potential to revolutionise gene discovery, as well as aiding in genome physical mapping and expression profiling experiments. This article introduces sequences called expressed sequence tags or ESTs, which are single-sequence reads from randomly-selected cDNA clones. We review the process used to create these sequences and outline the strengths and weaknesses of ESTs as research tools. Instructions on how to access and use EST data also are provided.

The requested document is freely available only to registered users with an online subscription to Nematology.

You can purchase this article below
If you subscribe to the paper version of Nematology you can activate electronic access for free

This journal is hosted by Ingenta Select, who have not recognised you as a registered user. If you have registered to access a personal subscription to this title please enter your username and password:

Username:*
Password:*

*case sensitive

lost password? submit

Athens Login via Athens SSO

To set up an institutional subscription please contact your library. For information on how to set up a personal online subscription please consult our FAQ.

Article Purchasing

If you would like to buy just this specific document, then take a look at the purchase details below. Please note that the electronic document will be delivered into your browser; if you want a paper copy, you should print the document out. Ingenta Select does not deliver documents by fax, post or e-mail.

<table>
<thead>
<tr>
<th>Charge To</th>
<th>Registration Details</th>
<th>Price Payable</th>
<th>Buy Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>Your Own Credit Card</td>
<td>Unregistered User</td>
<td>$20.00 + tax</td>
<td>Buy Now</td>
</tr>
<tr>
<td>Institutional Payment Account*</td>
<td>Unregistered User</td>
<td>$20.00 + tax</td>
<td>Buy Now</td>
</tr>
</tbody>
</table>

*You may purchase an item using your institution's deposit or billing account. Choosing this option will take you to ingenta.com and you will be required to log in as an ingenta.com registered user. The price will be shown as equivalent amount in Pounds (£) for UK users.
Document Request

The requested document is freely available only to registered users with an online subscription to Nematology. You can purchase this article below if you subscribe to the paper version of Nematology you can activate electronic access for free.

This journal is hosted by Ingenta Select, who have not recognised you as a registered user. If you have registered to access a personal subscription to this title please enter your username and password:

To set up an institutional subscription please contact your library. For information on how to set up a personal online subscription please consult our FAQ.

Article Purchasing

If you would like to buy just this specific document, then take a look at the purchase details below. Please note that the electronic document will be delivered into your browser; if you want a paper copy, you should print the document out. Ingenta Select does not deliver documents by fax, post or e-mail.

*You may purchase an item using your institution's deposit or billing account. Choosing this option will take you to ingenta.com and you will be required to log in as an ingenta.com registered user. The price will be shown as equivalent amount in Pounds (£) for UK users.

Title: Rapid gene discovery in plant parasitic nematodes via Expressed Sequence Tags

Author(s): James McCarter; Pierre Abad; John T. Jones; David Bird

Source: Nematology

Volume: 2

Number: 7

Page: 719 – 731

DOI: 10.1163/156854100509574

Publisher: BRILL

Abstract: Projects currently underway are generating thousands of publicly available DNA sequences representing numerous genes from plant parasitic nematodes. Use of these data has the potential to revolutionise gene discovery, as well as aiding in genome physical mapping and expression profiling experiments. This article introduces sequences called expressed sequence tags or ESTs, which are single sequence reads from randomly selected cDNA clones. We review the process used to create these sequences and outline the strengths and weaknesses of ESTs as research tools. Instructions on how to access and use EST data also are provided.

© Koninklijke Brill, Leiden 2008

Reference Links:

40 Article(s) which cite this article:

1